Problem 3.2

(a) For what range of ν is the function $f(x)=x^{\nu}$ in Hilbert space, on the interval $(0,1)$? Assume ν is real, but not necessarily positive.
(b) For the specific case $\nu=1 / 2$, is $f(x)$ in this Hilbert space? What about $x f(x)$? How about $(d / d x) f(x)$?

Solution

A function $f(x)$ is said to be in Hilbert space if it's square-integrable on a given interval.

$$
\int_{a}^{b}|f(x)|^{2} d x<\infty
$$

Part (a)

For $f(x)=x^{\nu}$ on the interval $0<x<1$,

$$
\begin{aligned}
\int_{a}^{b}|f(x)|^{2} d x & =\int_{0}^{1}\left(x^{\nu}\right)^{2} d x \\
& =\int_{0}^{1} x^{2 \nu} d x \\
& = \begin{cases}\left.\frac{x^{2 \nu+1}}{2 \nu+1}\right|_{0} ^{1} & \text { if } 2 \nu \neq-1 \\
\left.\ln x\right|_{0} ^{1} & \text { if } 2 \nu=-1\end{cases} \\
& = \begin{cases}\frac{1}{2 \nu+1}\left(1^{2 \nu+1}-0^{2 \nu+1}\right) & \text { if } 2 \nu \neq-1 \\
\ln 1-\ln 0 & \text { if } 2 \nu=-1 \\
0-(-\infty) & \text { if } 2 \nu=-1 \\
\frac{1}{2 \nu+1} & \text { if } 2 \nu+1>0\end{cases} \\
& = \begin{cases}\frac{1}{2 \nu+1} & \text { if } 2 \nu>-1 \\
\infty & \text { if } 2 \nu \leq-1\end{cases}
\end{aligned}
$$

Therefore, on the interval $0<x<1, f(x)=x^{\nu}$ is in Hilbert space if $\nu>-1 / 2$.

Part (b)

For the specific case that $\nu=1 / 2, f(x)=x^{1 / 2}$.

$$
\begin{aligned}
\int_{0}^{1}|f(x)|^{2} d x & =\int_{0}^{1}\left(x^{1 / 2}\right)^{2} d x=\int_{0}^{1} x d x=\frac{1}{2}<\infty \\
\int_{0}^{1}|x f(x)|^{2} d x & =\int_{0}^{1}\left(x^{3 / 2}\right)^{2} d x=\int_{0}^{1} x^{3} d x=\frac{1}{4}<\infty \\
\int_{0}^{1}\left|\frac{d}{d x} f(x)\right|^{2} d x & =\int_{0}^{1}\left(\frac{1}{2} x^{-1 / 2}\right)^{2} d x=\frac{1}{4} \int_{0}^{1} x^{-1} d x=\infty
\end{aligned}
$$

Therefore, on the interval $0<x<1, f(x)$ and $x f(x)$ are in Hilbert space, but $(d / d x) f(x)$ is not in Hilbert space.

